副教授,清华大学计算机科学与技术系 研究员,清华-IDG/麦戈文脑科学研究院 电子邮件: xlhu@tsinghua.edu.cn 个人主页:http://www.xlhu.cn/ |
[研究兴趣]
深度学习、计算神经科学。致力于在深度学习和脑科学之间建立桥梁,研究脑启发的深度学习模型,同时利用深度学习理解脑的计算机制。
[简历]
2013.12 - 清华大学计算机科学与技术系 副教授
2009.09 - 2013.11 清华大学计算机科学与技术系 助理研究员
2007.09 - 2009.08 清华大学计算机科学与技术系 博士后
2004.08 - 2007.07 香港中文大学机械与自动化系 博士
2001.09 - 2004.06 武汉理工大学汽车工程学院 硕士
1997.09 - 2001.06 武汉理工大学汽车工程学院 学士
[部分发表]
- Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu*, Jun Zhu, “Defense against adversarial attacks using high-level representation guided denoiser,” Proc. of the 31th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, June 18-22, 2018.
- Yulong Wang, Hang Su, Bo Zhang, Xiaolin Hu*, “Interpret neural networks by identifying critical data routing paths,” Proc. of the 31th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, June 18-22, 2018.
- Wentao Liu, Jie Chen, Cheng Li, Chen Qian, Xiao Chu, Xiaolin Hu*, “A cascaded inception of inception network with attention modulated feature fusion for human pose estimation,” The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), New Orleans, USA, Feb 14-19, 2018.
- Jianfeng Wang, Xiaolin Hu*, “Gated recurrent convolution neural network for OCR,” Advancies in Neural Information Processing (NIPS), Long Beach, USA, Dec. 4-9, 2017.
- Ming Liang, Xiaolin Hu*, Bo Zhang, “Convolutional neural networks with intra-layer recurrent connections for scene labeling,” Advances in Neural Information Processing (NIPS), Montréal, Canada, Dec. 7-12, 2015.
- Ming Liang, Xiaolin Hu*, “Recurrent convolutional neural network for object recognition,” Proc. of the 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, June 7-12, 2015, pp. 3367-3375.
- Qingtian Zhang, Xiaolin Hu*, Bo Hong, Bo Zhang, “A hierarchical sparse coding model predicts acoustic feature encoding in both auditory midbrain and cortex,” PLOS Computational Biology, 2019.
- Chengxu Zhuang, Yulong Wang, Daniel Yamins, Xiaolin Hu*, “Deep learning predicts correlation between a functional signature of higher visual areas and sparse firing of neurons,” Frontiers in Computational Neuroscience, 2017.