时间: 15:00-16:30 on Thur.,Aug.17, 2023
地点:生物医学馆E109会议室
主讲人: Dr. Uygar Sumbul
主持人: Dr.Xiaoxuan Jia(贾晓轩)
题目: Learning Neuronal Identity from Population Dynamics
摘要:
Neurons can display highly variable dynamics. While such variability presumably supports the wide range of behaviors generated by the organism, their gene expressions are relatively stable in the adult brain. This suggests that neuronal activity is a combination of its time-invariant identity and the inputs the neuron receives from the rest of the circuit. Here, we propose an unsupervised deep learning-based method to assign time-invariant representations to individual neurons based on permutation-, and population size-invariant summary of population recordings. We fit dynamical models to neuronal activity to learn a representation by considering the activity of both the individual and the neighboring population. Our unsupervised approach and use of implicit representations enable robust inference against imperfections such as partial overlap of neurons across sessions, trial-to-trial variability, and limited availability of molecular (transcriptomic) labels for downstream supervised tasks. We demonstrate our method on a public multimodal dataset of mouse cortical neuronal activity and transcriptomic labels.
报告人简介:
Uygar Sumbul is an Associate Investigator at the Allen Institute (USA). His research is broadly on computational neuroscience and machine learning. He obtained a PhD in Electrical Engineering and a PhD minor in Mathematics from Stanford University (USA) in 2009. Prior to joining the Allen Institute, he was a postdoctoral researcher at MIT (USA) with Sebastian Seung and at Columbia University (USA) with Liam Paninski. He obtained a BS in Electrical Engineering from Bilkent University (Turkey).